Check out example codes for "keras conv2d batchnorm". It will help you in understanding the concepts better.

Code Example 1

# import BatchNormalization
from keras.layers.normalization import BatchNormalization

# instantiate model
model = Sequential()

# we can think of this chunk as the input layer
model.add(Dense(64, input_dim=14, init='uniform'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))

# we can think of this chunk as the hidden layer    
model.add(Dense(64, init='uniform'))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.5))

# we can think of this chunk as the output layer
model.add(Dense(2, init='uniform'))
model.add(BatchNormalization())
model.add(Activation('softmax'))

# setting up the optimization of our weights 
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='binary_crossentropy', optimizer=sgd)

# running the fitting
model.fit(X_train, y_train, nb_epoch=20, batch_size=16, show_accuracy=True, validation_split=0.2, verbose = 2)

Learn ReactJs, React Native from akashmittal.com