Check out example codes for "bfs". It will help you in understanding the concepts better.

Code Example 1

// Program to print BFS traversal from a given 
// source vertex. BFS(int s) traverses vertices  
// reachable from s. 
#include<iostream> 
#include <list> 
  
using namespace std; 
  
// This class represents a directed graph using 
// adjacency list representation 
class Graph 
{ 
    int V;    // No. of vertices 
  
    // Pointer to an array containing adjacency 
    // lists 
    list<int> *adj;    
public: 
    Graph(int V);  // Constructor 
  
    // function to add an edge to graph 
    void addEdge(int v, int w);  
  
    // prints BFS traversal from a given source s 
    void BFS(int s);   
}; 
  
Graph::Graph(int V) 
{ 
    this->V = V; 
    adj = new list<int>[V]; 
} 
  
void Graph::addEdge(int v, int w) 
{ 
    adj[v].push_back(w); // Add w to v’s list. 
} 
  
void Graph::BFS(int s) 
{ 
    // Mark all the vertices as not visited 
    bool *visited = new bool[V]; 
    for(int i = 0; i < V; i++) 
        visited[i] = false; 
  
    // Create a queue for BFS 
    list<int> queue; 
  
    // Mark the current node as visited and enqueue it 
    visited[s] = true; 
    queue.push_back(s); 
  
    // 'i' will be used to get all adjacent 
    // vertices of a vertex 
    list<int>::iterator i; 
  
    while(!queue.empty()) 
    { 
        // Dequeue a vertex from queue and print it 
        s = queue.front(); 
        cout << s << " "; 
        queue.pop_front(); 
  
        // Get all adjacent vertices of the dequeued 
        // vertex s. If a adjacent has not been visited,  
        // then mark it visited and enqueue it 
        for (i = adj[s].begin(); i != adj[s].end(); ++i) 
        { 
            if (!visited[*i]) 
            { 
                visited[*i] = true; 
                queue.push_back(*i); 
            } 
        } 
    } 
} 
  
// Driver program to test methods of graph class 
int main() 
{ 
    // Create a graph given in the above diagram 
    Graph g(4); 
    g.addEdge(0, 1); 
    g.addEdge(0, 2); 
    g.addEdge(1, 2); 
    g.addEdge(2, 0); 
    g.addEdge(2, 3); 
    g.addEdge(3, 3); 
  
    cout << "Following is Breadth First Traversal "
         << "(starting from vertex 2) \n"; 
    g.BFS(2); 
  
    return 0; 
}

Code Example 2

procedure BFS(G, start_v) is
2      let Q be a queue
3      label start_v as discovered
4      Q.enqueue(start_v)
5      while Q is not empty do
6          v := Q.dequeue()
7          if v is the goal then
8              return v
9          for all edges from v to w in G.adjacentEdges(v) do
10             if w is not labeled as discovered then
11                 label w as discovered
12                 w.parent := v
13                 Q.enqueue(w)

Code Example 3

function breadthFirstSearch (Start, Goal)
   { 
       enqueue(Queue,Start)
       setVisited(start)
       while notEmpty(Queue)
       {
           Node := dequeue(Queue)
           if Node = Goal
           {
               return Node
           }
           for each Child in Expand(Node)
           {
               if notVisited(Child)
               {              
                   setVisited(Child)
                   enqueue(Queue, Child)
               }
           }
       }
   }

Code Example 4

function breadthFirstSearch (Start, Goal)
   { 
       enqueue(Queue,Start)
       setVisited(start)
       while notEmpty(Queue)
       {
           Node := dequeue(Queue)
           if Node = Goal
           {
               return Node
           }
           for each Child in Expand(Node)
           {
               if notVisited(Child)
               {              
                   setVisited(Child)
                   enqueue(Queue, Child)
               }
           }
       }
   }

Learn ReactJs, React Native from akashmittal.com