Check out example codes for "bitwise operator". It will help you in understanding the concepts better.

Code Example 1

12 = 00001100 (In Binary)
25 = 00011001 (In Binary)

Bitwise XOR Operation of 12 and 25
  00001100
^ 00011001
  ________
  00010101  = 21 (In decimal)

Code Example 2

// C Program to demonstrate use of bitwise operators 
#include <stdio.h> 
int main() 
{ 
    // a = 5(00000101), b = 9(00001001) 
    unsigned char a = 5, b = 9; 
  
    // The result is 00000001 
    printf("a = %d, b = %d\n", a, b); 
    printf("a&b = %d\n", a & b); 
  
    // The result is 00001101 
    printf("a|b = %d\n", a | b); 
  
    // The result is 00001100 
    printf("a^b = %d\n", a ^ b); 
  
    // The result is 11111010 
    printf("~a = %d\n", a = ~a); 
  
    // The result is 00010010 
    printf("b<<1 = %d\n", b << 1); 
  
    // The result is 00000100 
    printf("b>>1 = %d\n", b >> 1); 
  
    return 0; 
}

Code Example 3

#include <stdio.h>
int main()
{
    printf("Output = %d\n",~35);
    printf("Output = %d\n",~-12);
    return 0;
}

Code Example 4

12 = 00001100 (In Binary)
25 = 00011001 (In Binary)

Bit Operation of 12 and 25
  00001100
& 00011001
  ________
  00001000  = 8 (In decimal)

Code Example 5

bitwise complement of N = ~N (represented in 2's complement form)
2'complement of ~N= -(~(~N)+1) = -(N+1)

Code Example 6

#include <stdio.h>
int main()
{
    int a = 12, b = 25;
    printf("Output = %d", a&b);
    return 0;
}

Code Example 7

Decimal         Binary           2's complement 
   0            00000000           -(11111111+1) = -00000000 = -0(decimal)
   1            00000001           -(11111110+1) = -11111111 = -256(decimal)
   12           00001100           -(11110011+1) = -11110100 = -244(decimal)
   220          11011100           -(00100011+1) = -00100100 = -36(decimal)

Note: Overflow is ignored while computing 2's complement.

Code Example 8

35 = 00100011 (In Binary)

Bitwise complement Operation of 35
~ 00100011 
  ________
  11011100  = 220 (In decimal)

Learn ReactJs, React Native from akashmittal.com