Check out example codes for "histogram largest rectange in cpp". It will help you in understanding the concepts better.

Code Example 1

// C++ program to find maximum rectangular area in 
// linear time 
#include<bits/stdc++.h> 
using namespace std; 
  
// The main function to find the maximum rectangular  
// area under given histogram with n bars 
int getMaxArea(int hist[], int n) 
{ 
    // Create an empty stack. The stack holds indexes  
    // of hist[] array. The bars stored in stack are  
    // always in increasing order of their heights. 
    stack<int> s; 
  
    int max_area = 0; // Initialize max area 
    int tp;  // To store top of stack 
    int area_with_top; // To store area with top bar 
                       // as the smallest bar 
  
    // Run through all bars of given histogram 
    int i = 0; 
    while (i < n) 
    { 
        // If this bar is higher than the bar on top  
        // stack, push it to stack 
        if (s.empty() || hist[s.top()] <= hist[i]) 
            s.push(i++); 
  
        // If this bar is lower than top of stack,  
        // then calculate area of rectangle with stack  
        // top as the smallest (or minimum height) bar.  
        // 'i' is 'right index' for the top and element  
        // before top in stack is 'left index' 
        else
        { 
            tp = s.top();  // store the top index 
            s.pop();  // pop the top 
  
            // Calculate the area with hist[tp] stack  
            // as smallest bar 
            area_with_top = hist[tp] * (s.empty() ? i :  
                                   i - s.top() - 1); 
  
            // update max area, if needed 
            if (max_area < area_with_top) 
                max_area = area_with_top; 
        } 
    } 
  
    // Now pop the remaining bars from stack and calculate 
    // area with every popped bar as the smallest bar 
    while (s.empty() == false) 
    { 
        tp = s.top(); 
        s.pop(); 
        area_with_top = hist[tp] * (s.empty() ? i :  
                                i - s.top() - 1); 
  
        if (max_area < area_with_top) 
            max_area = area_with_top; 
    } 
  
    return max_area; 
} 
  
// Driver program to test above function 
int main() 
{ 
    int hist[] = {6, 2, 5, 4, 5, 1, 6}; 
    int n = sizeof(hist)/sizeof(hist[0]); 
    cout << "Maximum area is " << getMaxArea(hist, n); 
    return 0; 
}

Learn ReactJs, React Native from akashmittal.com