Check out example codes for "How to check if a triangular cycle exists in a graph". It will help you in understanding the concepts better.

Code Example 1

// C++ program to find out whether 
// a given graph is Bipartite or not. 
// It works for disconnected graph also. 
#include <bits/stdc++.h> 
  
using namespace std; 
  
const int V = 4; 
  
// This function returns true if  
// graph G[V][V] is Bipartite, else false 
bool isBipartiteUtil(int G[][V], int src, int colorArr[]) 
{ 
    colorArr[src] = 1; 
  
    // Create a queue (FIFO) of vertex numbers a 
    // nd enqueue source vertex for BFS traversal 
    queue <int> q; 
    q.push(src); 
  
    // Run while there are vertices in queue (Similar to BFS) 
    while (!q.empty()) 
    { 
        // Dequeue a vertex from queue ( Refer http://goo.gl/35oz8 ) 
        int u = q.front(); 
        q.pop(); 
  
        // Return false if there is a self-loop  
        if (G[u][u] == 1) 
        return false;  
  
        // Find all non-colored adjacent vertices 
        for (int v = 0; v < V; ++v) 
        { 
            // An edge from u to v exists and 
            // destination v is not colored 
            if (G[u][v] && colorArr[v] == -1) 
            { 
                // Assign alternate color to this 
                // adjacent v of u 
                colorArr[v] = 1 - colorArr[u]; 
                q.push(v); 
            } 
  
            // An edge from u to v exists and destination 
            // v is colored with same color as u 
            else if (G[u][v] && colorArr[v] == colorArr[u]) 
                return false; 
        } 
    } 
  
    // If we reach here, then all adjacent vertices can 
    // be colored with alternate color 
    return true; 
} 
  
// Returns true if G[][] is Bipartite, else false 
bool isBipartite(int G[][V]) 
{ 
    // Create a color array to store colors assigned to all 
    // veritces. Vertex/ number is used as index in this 
    // array. The value '-1' of colorArr[i] is used to 
    // ndicate that no color is assigned to vertex 'i'. 
    // The value 1 is used to indicate first color is 
    // assigned and value 0 indicates second color is 
    // assigned. 
    int colorArr[V]; 
    for (int i = 0; i < V; ++i) 
        colorArr[i] = -1; 
  
    // This code is to handle disconnected graoh 
    for (int i = 0; i < V; i++) 
    if (colorArr[i] == -1) 
        if (isBipartiteUtil(G, i, colorArr) == false) 
        return false; 
  
    return true; 
} 
  
// Driver program to test above function 
int main() 
{ 
    int G[][V] = {{0, 1, 0, 1}, 
        {1, 0, 1, 0}, 
        {0, 1, 0, 1}, 
        {1, 0, 1, 0} 
    }; 
  
    isBipartite(G) ? cout << "Yes" : cout << "No"; 
    return 0; 
}

Learn ReactJs, React Native from akashmittal.com