Check out example codes for "binary search java". It will help you in understanding the concepts better.

Code Example 1

binary search program in java.
public class BinarySearchExample
{
   public static void binarySearch(int[] arrNumbers, int start, int end, int keyElement)
   {
      int middle = (start + end) / 2;
      while(start <= end)
      {
         if(arrNumbers[middle] < keyElement)
         {
            start = middle + 1;
         }
         else if(arrNumbers[middle] == keyElement)
         {
            System.out.println("Element found at index: " + middle);
            break;
         }
         else
         {
            end = middle - 1;
         }
         middle = (start + end) / 2;
      }
      if(start > end)
      {
         System.out.println("Element not found!");
      }
   }
   public static void main(String[] args)
   {
      int[] arrNumbers = {14,15,16,17,18};
      int keyElement = 16;
      int end = arrNumbers.length - 1;
      binarySearch(arrNumbers, 0, end, keyElement);
   }
}

Code Example 2

// Java implementation of iterative Binary Search 
class BinarySearch { 
	// Returns index of x if it is present in arr[], 
	// else return -1 
	int binarySearch(int arr[], int x) 
	{ 
		int l = 0, r = arr.length - 1; 
		while (l <= r) { 
			int m = l + (r - l) / 2; 

			// Check if x is present at mid 
			if (arr[m] == x) 
				return m; 

			// If x greater, ignore left half 
			if (arr[m] < x) 
				l = m + 1; 

			// If x is smaller, ignore right half 
			else
				r = m - 1; 
		} 

		// if we reach here, then element was 
		// not present 
		return -1; 
	} 

	// Driver method to test above 
	public static void main(String args[]) 
	{ 
		BinarySearch ob = new BinarySearch(); 
		int arr[] = { 2, 3, 4, 10, 40 }; 
		int n = arr.length; 
		int x = 10; 
		int result = ob.binarySearch(arr, x); 
		if (result == -1) 
			System.out.println("Element not present"); 
		else
			System.out.println("Element found at "
							+ "index " + result); 
	} 
}

Code Example 3

// C++ program to implement recursive Binary Search 
#include <bits/stdc++.h> 
using namespace std; 
  
// A recursive binary search function. It returns 
// location of x in given array arr[l..r] is present, 
// otherwise -1 
int binarySearch(int arr[], int l, int r, int x) 
{ 
    if (r >= l) { 
        int mid = l + (r - l) / 2; 
  
        // If the element is present at the middle 
        // itself 
        if (arr[mid] == x) 
            return mid; 
  
        // If element is smaller than mid, then 
        // it can only be present in left subarray 
        if (arr[mid] > x) 
            return binarySearch(arr, l, mid - 1, x); 
  
        // Else the element can only be present 
        // in right subarray 
        return binarySearch(arr, mid + 1, r, x); 
    } 
  
    // We reach here when element is not 
    // present in array 
    return -1; 
} 
  
int main(void) 
{ 
    int arr[] = { 2, 3, 4, 10, 40 }; 
    int x = 10; 
    int n = sizeof(arr) / sizeof(arr[0]); 
    int result = binarySearch(arr, 0, n - 1, x); 
    (result == -1) ? cout << "Element is not present in array"
                   : cout << "Element is present at index " << result; 
    return 0; 
}

Code Example 4

// Java implementation of recursive Binary Search 
class BinarySearch { 
    // Returns index of x if it is present in arr[l.. 
    // r], else return -1 
    int binarySearch(int arr[], int l, int r, int x) 
    { 
        if (r >= l) { 
            int mid = l + (r - l) / 2; 
  
            // If the element is present at the 
            // middle itself 
            if (arr[mid] == x) 
                return mid; 
  
            // If element is smaller than mid, then 
            // it can only be present in left subarray 
            if (arr[mid] > x) 
                return binarySearch(arr, l, mid - 1, x); 
  
            // Else the element can only be present 
            // in right subarray 
            return binarySearch(arr, mid + 1, r, x); 
        } 
  
        // We reach here when element is not present 
        // in array 
        return -1; 
    } 
  
    // Driver method to test above 
    public static void main(String args[]) 
    { 
        BinarySearch ob = new BinarySearch(); 
        int arr[] = { 2, 3, 4, 10, 40 }; 
        int n = arr.length; 
        int x = 10; 
        int result = ob.binarySearch(arr, 0, n - 1, x); 
        if (result == -1) 
            System.out.println("Element not present"); 
        else
            System.out.println("Element found at index " + result); 
    } 
} 
/* This code is contributed by Rajat Mishra */

Learn ReactJs, React Native from akashmittal.com