Check out example codes for "insertion sort java". It will help you in understanding the concepts better.

Code Example 1

/**
* Insertion sort algorithm, O(n^2) time complexity.
*/
public static void insertionSort(int[] arr) {
  int n = arr.length;
  for(int i = 1; i < n; i++) {
    int key = arr[i];
    int j = i - 1;
    //shift until you find the position to place the element 'key'
    while(j >= 0 && arr[j] > key) {
      arr[j+1] = arr[j];
      j--;
    }
    //place element 'key' in the correct position in the sorted part of the array
    arr[j+1] = key;
  }
}

Code Example 2

Insertion program
public class InsertionSortExample
{
   public void sort(int[] arrNum)
   {
      int number = arrNum.length;
      for(int a = 1; a < number; ++a)
      {
         int keyValue = arrNum[a];
         int b = a - 1;
         while(b >= 0 && arrNum[b] > keyValue)
         {
            arrNum[b + 1] = arrNum[b];
            b = b - 1;
         }
         arrNum[b + 1] = keyValue;
      }
   }
   static void displayArray(int[] arrNum)
   {
      int num = arrNum.length;
      for(int a = 0; a < num; ++a)
      {
         System.out.print(arrNum[a] + " ");
      }
      System.out.println();
   }
   public static void main(String[] args)
   {
      int[] arrInput = { 50, 80, 10, 30, 90, 60 };
      InsertionSortExample obj = new InsertionSortExample();
      obj.sort(arrInput);
      displayArray(arrInput);
   }
}

Code Example 3

/ C++ program for insertion sort  
#include <bits/stdc++.h> 
using namespace std; 
  
/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)  
{  
    int i, key, j;  
    for (i = 1; i < n; i++) 
    {  
        key = arr[i];  
        j = i - 1;  
  
        /* Move elements of arr[0..i-1], that are  
        greater than key, to one position ahead  
        of their current position */
        while (j >= 0 && arr[j] > key) 
        {  
            arr[j + 1] = arr[j];  
            j = j - 1;  
        }  
        arr[j + 1] = key;  
    }  
}  
  
// A utility function to print an array of size n  
void printArray(int arr[], int n)  
{  
    int i;  
    for (i = 0; i < n; i++)  
        cout << arr[i] << " ";  
    cout << endl; 
}  
  
/* Driver code */
int main()  
{  
    int arr[] = { 12, 11, 13, 5, 6 };  
    int n = sizeof(arr) / sizeof(arr[0]);  
  
    insertionSort(arr, n);  
    printArray(arr, n);  
  
    return 0;  
}  
  
// This is code is contributed by rathbhupendra

Code Example 4

// Por ter uma complexidade alta,
// não é recomendado para um conjunto de dados muito grande.
// Complexidade: O(n²) / O(n**2) / O(n^2)
// @see https://www.youtube.com/watch?v=TZRWRjq2CAg
// @see https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

function insertionSort(vetor) {
    let current;
    for (let i = 1; i < vetor.length; i += 1) {
        let j = i - 1;
        current = vetor[i];
        while (j >= 0 && current < vetor[j]) {
            vetor[j + 1] = vetor[j];
            j--;
        }
        vetor[j + 1] = current;
    }
    return vetor;
}

insertionSort([1, 2, 5, 8, 3, 4])

Code Example 5

// C++ program for insertion sort  
#include <bits/stdc++.h> 
using namespace std; 
  
/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)  
{  
    int i, key, j;  
    for (i = 1; i < n; i++) 
    {  
        key = arr[i];  
        j = i - 1;  
  
        /* Move elements of arr[0..i-1], that are  
        greater than key, to one position ahead  
        of their current position */
        while (j >= 0 && arr[j] > key) 
        {  
            arr[j + 1] = arr[j];  
            j = j - 1;  
        }  
        arr[j + 1] = key;  
    }  
}  
  
// A utility function to print an array of size n  
void printArray(int arr[], int n)  
{  
    int i;  
    for (i = 0; i < n; i++)  
        cout << arr[i] << " ";  
    cout << endl; 
}  
  
/* Driver code */
int main()  
{  
    int arr[] = { 12, 11, 13, 5, 6 };  
    int n = sizeof(arr) / sizeof(arr[0]);  
  
    insertionSort(arr, n);  
    printArray(arr, n);  
  
    return 0;  
}  
  
// This is code is contributed by rathbhupendra

Learn ReactJs, React Native from akashmittal.com